37,937 research outputs found

    A General Method for Complete Population Transfer in Degenerate Systems

    Full text link
    A simple theoretical solution to the design of a control field that generates complete population transfer from an initial state, via NN nondegenerate intermediate states, to one arbitrary member of MM (M≤NM\leq N) degenerate states is constructed. The full control field exploits an (M+N−1)(M+N-1)-node null adiabatic state, created by designing the relative phases and amplitudes of the component fields that together make up the full field. The solution found is universal in the sense that it does not depend on the exact number of the unwanted degenerate states or their properties. The results obtained suggest that a class of multi-level quantum systems with degenerate states can be completely controllable, even under extremely strong constraints, e.g., never populating a Hilbert subspace that is only a few dimensions smaller than the whole Hilbert space.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    Interband proximity effect and nodes of superconducting gap in Sr2RuO4

    Full text link
    The power-law temperature dependences of the specific heat, the nuclear relaxation rate, and the thermal conductivity suggest the presence of line nodes in the superconducting gap of Sr2RuO4. These recent experimental observations contradict the scenario of a nodeless (k_x+ik_y)-type superconducting order parameter. We propose that interaction of superconducting order parameters on different sheets of the Fermi surface is a key to understanding the above discrepancy. A full gap exists in the active band, which drives the superconducting instability, while line nodes develop in passive bands by interband proximity effect.Comment: 4 pages, 1 figur

    Surprises on the Way from 1D to 2D Quantum Magnets: the Novel Ladder Materials

    Full text link
    One way of making the transition between the quasi-long range order in a chain of S=1/2 spins coupled antiferromagnetically and the true long range order that occurs in a plane, is by assembling chains to make ladders of increasing width. Surprisingly this crossover between one and two dimensions is not at all smooth. Ladders with an even number of legs have purely short range magnetic order and a finite energy gap to all magnetic excitations. Predictions of this novel groundstate have now been verified experimentally. Holes doped into these ladders are predicted to pair, and possibly superconduct.Comment: Review Article, Science, TeX file, 18 pages, 6 figures available upon reques

    A Simple Model for the Checkerboard Pattern of Modulated Hole Densities in Underdoped Cuprates

    Full text link
    A simple model is proposed as a possible explanation for the checkerboard pattern of modulations in the hole density observed in recent tunneling experiments on underdoped cuprates. Two assumptions are made; first, an enhanced hole density near the acceptor dopants and secondly short range correlations in the positions of these dopants caused by their electrostatic and anisotropic elastic interactions. Together these can lead to a structure factor in qualitative agreement with experiment.Comment: 4 pages, 4 figures; Fig.3 and Fig.4(c) added, typos corrected, references adde

    Flow to strong coupling in the two-dimensional Hubbard model

    Full text link
    We extend the analysis of the renormalization group flow in the two-dimensional Hubbard model close to half-filling using the recently developed temperature flow formalism. We investigate the interplay of d-density wave and Fermi surface deformation tendencies with those towards d-wave pairing and antiferromagnetism. For a ratio of next nearest to nearest neighbor hoppings, t'/t=-0.25, and band fillings where the Fermi surface is inside the Umklapp surface, only the d-pairing susceptibility diverges at low temperatures. When the Fermi surface intersects the Umklapp surface close to the saddle points, d-wave pairing, d-density wave, antiferromagnetic and, to a weaker extent, d-wave Fermi surface deformation susceptibilities grow together when the interactions flow to strong coupling. We interpret these findings as indications for a non-trivial strongly coupled phase with short-ranged superconducting and antiferromagnetic correlations, in close analogy with the spin liquid ground state in the well-understood two-leg Hubbard ladder.Comment: 8 pages, to appear in European Physical Journal

    Heirs of Vision, Devotion, and Sacrifice

    Get PDF
    Professor Edwin Kagin\u27s 1961 Founders Day speech, Heirs of Vision, Devotion, and Sacrifice. Reel #14

    A study of low-cost reliable actuators for light aircraft. Part B: Appendices

    Get PDF
    Computer programs written in FORTRAN are given for time response calculations on pneumatic and linear hydraulic actuators. The programs are self-explanatory with comment statements. Program output is also included
    • …
    corecore